Refined Asymptotics for Sparse Sums of Squares

نویسندگان

  • Maurice Rojas
  • Swaminathan Sethuraman
چکیده

To prove that a polynomial is nonnegative on R one can try to show that it is a sum of squares of polynomials (SOS). The latter problem is now known to be reducible to a semidefinite programming (SDP) computation much faster than classical algebraic methods (see, e.g., [Par03]), thus enabling new speed-ups in algebraic optimization. However, exactly how often nonnegative polynomials are in fact sums of squares of polynomials remains an open problem. Blekherman was recently able to show [Ble09] that for degree k polynomials in n variables — with k≥ 4 fixed — those that are SOS occupy a vanishingly small fraction of those that are nonnegative on R, as n −→ ∞. With an eye toward the case of small n, we refine Blekherman’s bounds by incorporating the underlying Newton polytope, simultaneously sharpening some of his older bounds along the way. Our refined asymptotics show that certain Newton polytopes may lead to families of polynomials where efficient SDP can still be used for most inputs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ja n 20 09 Refined Asymptotics for Sparse Sums of Squares ( Extended Abstract )

To prove that a polynomial is nonnegative on R one can try to show that it is a sum of squares of polynomials (SOS). The latter problem is now known to be reducible to a semidefinite programming (SDP) computation much faster than classical algebraic methods (see, e.g., [Par03]), thus enabling new speed-ups in algebraic optimization. However, exactly how often nonnegative polynomials are in fact...

متن کامل

Refined Asymptotics for Multigraded Sums of Squares

To prove that a polynomial is nonnegative on Rn one can try to show that it is a sum of squares of polynomials. The latter problem is now known to be reducible to a semidefinite programming computation much faster than classical algebraic methods, thus enabling new speed-ups in algebraic optimization. However, exactly how often nonnegative polynomials are in fact sums of squares of polynomials ...

متن کامل

Sparsity in sums of squares of polynomials

Representation of a given nonnegative multivariate polynomial in terms of a sum of squares of polynomials has become an essential subject in recent developments of sums of squares optimization and SDP (semidefinite programming) relaxation of polynomial optimization problems. We disscuss effective methods to obtain a simpler representation of a “sparse” polynomial as a sum of squares of sparse p...

متن کامل

Randomization, Sums of Squares, and Faster Real Root Counting for Tetranomials and Beyond

Suppose f is a real univariate polynomial of degree D with exactly 4 monomial terms. We present an algorithm, with complexity polynomial in logD on average (relative to the stable log-uniform measure), for counting the number of real roots of f . The best previous algorithms had complexity super-linear in D. We also discuss connections to sums of squares and A-discriminants, including explicit ...

متن کامل

Randomization, Sums of Squares, Near-Circuits, and Faster Real Root Counting

Suppose that f is a real univariate polynomial of degree D with exactly 4 monomial terms. We present a deterministic algorithm of complexity polynomial in logD that, for most inputs, counts the number of real roots of f . The best previous algorithms have complexity super-linear in D. We also discuss connections to sums of squares and Adiscriminants, including explicit obstructions to expressin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009